Abstract

Different viruses belonging to distinct viral families, such as enterovirus 71, rely on the host methyltransferase METTL3 for the completion of fundamental cytoplasmic stages of their life cycle. Modulation of the activity of this enzyme could therefore provide a broad-spectrum approach to interfere with viral infections caused by viruses that depend on its activity for the completion of their viral cycle. With the aim to identify antiviral therapeutics with this effect, a series of new nucleoside analogues was rationally designed to act as inhibitors of human METTL3, as a novel approach to interfere with a range of viral infections. Guided by molecular docking studies on the SAM binding pocket of the enzyme, 24 compounds were prepared following multiple-step synthetic protocols, and evaluated for their ability to interfere with the replication of different viruses in cell-based systems, and to directly inhibit the activity of METTL3. While different molecules displayed moderate inhibition of the human methyltransferase in vitro, multiple novel, potent and selective inhibitors of enterovirus 71 were identified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.