Abstract

The abnormal signaling from tyrosine kinase causes many types of cancers, including breast cancer, non-small cell lung cancer, and chronic myeloid leukemia. This research reports the in silico, synthesis, and in vitro study of novel pyrimidine derivatives as EGFR inhibitors. The objective of the research study is to discover more promising lead compounds using the drug discovery process, in which a rational drug design is achieved by molecular docking and virtual pharmacokinetic studies. The molecular docking studies were carried out using discovery studio 3.5-version software. The molecules with good docking and binding energy score were synthesized, and their structures were confirmed by FT-IR, NMR, Mass and elemental analysis. Subsequently, molecules were evaluated for their anti-cancer activity using MDA-MB-231, MCF-7, and A431 breast cancer cell lines by MTT and tyrosine kinase assay methodology. Pyrimidine derivatives displayed anti-cancer activity. Particularly, compound R8 showed significant cytotoxicity against MDA-MB-231 with an IC50 value of 18.5±0.6μM. Molecular docking studies proved that the compound R8 has good binding fitting by forming hydrogen bonds with amino acid residues at ATP binding sites of EGFR. Eight pyrimidine derivatives were designed, synthesized, and evaluated against breast cancer cell lines. Compound R8 significantly inhibited the growth of MDA-MB-231 and MCF-7. Molecular docking studies revealed that compound R8 has good fitting by forming different Hydrogen bonding interactions with amino acids at the ATP binding site of epidermal growth factor receptor target. Compound R8 was a promising lead molecule that showed better results as compared to other compounds in in vitro studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.