Abstract
Curcumin (Cur), appeared to provide huge potential in biomedical application. However, its therapeutic efficacy was greatly limited as the result of poor solubility and instability. To address these limitations, we create a new type of hollow mesoporous titania nanoparticle (HMTN) to encapsulate Cur. HMTN was decorated with a layer of hydrophilic polyethylenimine (PEI), which controlled the release rate of Cur inside the pore due to its dendritic structure. Combined with the folic acid (FA) mediated targeting effect, the potential multifunctional Cur loaded titania nanoparticle (Cur-FA-PEI-HMTN) showed excellent biocompatibility and bioavailability, as well as the UV-responsive drug release properties. The operating parameters to prepare hollow structure were studied and the Cur-FA-PEI-HMTN nanosystem had been fully characterized by Brunauer–Emmet–Teller, Fourier transform infrared spectroscopy, transmission electron microscope, thermal gravity analysis, differential thermal analysis, x-ray diffraction, dynamic light scattering and zeta potential. In addition, the hemolytic test, as well as CCK8, flow cytometry, Hoechst 33342 staining experiment, were carried out to confirm the low cytotoxity and high biocompatibility. The confocal microscopy analysis results also revealed the increasing uptake of Cur@FA-PEI-HMTN by MCF-7 cells. The synthesized nanoparticles displayed great potential as drug nanovehicles with high biocompatibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.