Abstract
Nanotheranostics, which can provide great insight into cancer therapy, has been deemed as a promising technology to settle the unmet medical needs. The rational design of high performance nanotheranostics with multiple complementary imaging features and satisfactory therapeutic efficacy is particularly valuable. Herein, versatile nanotheranostic agents DPPB-Gd-I NPs were fabricated by using gadolinium-diethylenetriaminepentaacetic acid chelates and an iodine-decorated copolymer as encapsulation matrixes to encapsulate a polymer DPPB through one-step nanoprecipitation. We have demonstrated that such nanoagents are able to efficiently damage tumors under single dose injection and NIR laser illumination conditions due to the enhanced photodynamic therapy and enhanced photothermal therapy (the tumor inhibition rate was as high as 94.5%). Moreover, these nanoagents can be utilized as dual-modal NIR-II fluorescence/magnetic resonance imaging probes for tumor diagnosis with high sensitivity, deep tissue penetration, and excellent spatial resolution. Overall, this work offers a powerful tactic to fabricate high performance nanotheranostics for clinical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.