Abstract

The hierarchically nanostructured NiTe@CoxSy composites are constructed on a foamed nickel substrate by a two-step electrode preparation process. Structural characterization shows the dense growing of CoxSy nanosheets around NiTe nanorods forms a hierarchical nanostructure which possesses synergetic effects from both compositional and structural complementarity, more pathways for ion/electrolyte transport, richer redox active sites, and better conductivity. Thanks to the rational design of this hierarchical structure, NiTe@CoxSy delivers a high areal capacitance of 7.7F cm−2 at 3 mA cm−2 and achieves the improved capacitance retention of 97.9% after 10,000 cycles. Of particular importance is the successful fabrication of NiTe@CoxSy//activated carbon hybrid supercapacitors. This hybrid device has a wide operating voltage window, high areal energy density of 0.48 mWh cm−2 at 2.55 mW cm−2, impressive rate capability of 62.3% even after a 20-fold increase of the current density, and a 115.1% of initial capacitance retention after 15,000 cycles. Meanwhile, two tandem such hybrid devices can easily drive a pair of mini fans or light up a heart-like pattern assembled by 10 red LEDs. These experimental results not only demonstrate that the hierarchically nanostructured NiTe@CoxSy composites can serve as a prospective candidate electrode; but also develop a novel strategy about how to achieve high-performance stockpile equipment by rationale designing a desirable nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.