Abstract

We report a facile low-cost thermal polymerization method of urea to produce 2D carbon nitride nanosheets (GCN) as confirmed via a plethora of morphological and structural characterization techniques. The GCN electrodes showed excellent electrochemical performance with a very wide operating voltage window upon their use as positive and negative poles in supercapacitor devices. The GCN exhibited high specific capacitance as positive and negative electrodes in 0.5 M H2SO4. The symmetric supercapacitor (GCN//GCN) device possesses a wide operating voltage window of 2 V, with an ultrahigh energy density of 19.33 Wh/kg and superior stability over 21,000 charge/discharge cycles. The device was assembled on graphite sheet and not on Ni foam to avoid the raised caveats on the contribution of the redox-active Ni foam to the measured capacities. These unique properties can be ascribed to the high nitrogen doping level (exceeding 12%), revealing the potential of pristine GCN as promising candidates for further investigation and development in energy conversion and storage applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call