Abstract
Carbon-based quantum dots (QDs) exhibit unique photoluminescence due to size-dependent quantum confinement, giving rise to fascinating full-color emission properties. Accurate emission calculations using time-dependent density functional theory are a time-costing and expensive process. Herein, we employed an artificial neural network (ANN) combined with statistical learning to establish the relationship between geometrical/electronic structures of ground states and emission wavelength for C3N QDs. The emission energy of these QDs can be doubly modulated by size and edge effects, which are governed by the number of C4N2 rings and the CH group, respectively. Moreover, these two structural characteristics also determine the phonon vibration mode of C3N QDs to harmonize the emission intensity and lifetime of hot electrons in the electron-hole recombination process, as indicated by nonadiabatic molecular dynamics simulation. These computational results provide a general approach to atomically precise design the full-color fluorescent carbon-based QDs with targeted functions and high performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.