Abstract
The alkaline phosphatase (ALP) activity assay is very significant for disease diagnosis and biomedical research. Lanthanide metal-organic framework (Ln-MOF) based fluorescence sensors have great application potential in ALP activity assays. However, it is critical but challenging to investigate the emission law of Ln-MOFs for revealing rational design principles and selecting an appropriate MOF. Here, we describe a reasonable design strategy for dual-emission Ln-MOFs based on theoretical calculations. This strategy combines Reinhoudt empirical rule, intramolecular charge transfer theory, and aggregation/coordination-induced emission theory; reveals the luminescence law of Ln-MOFs; and provides theoretical guidance for the rational design of dual-emission Ln-MOFs. On the basis of this strategy, we create a dual-emission Tb-MOF fluorescent probe used for ALP activity assay and investigate the detection mechanism. The probe shows ultrasensitive (limit of detection 0.002 mU mL-1) and selective response to ALP, and it suits for point-of-care visual detection coupled with a self-designed portable enzyme activity assay kit and smartphone-assisted visual device. The kit-based visual assay method can accurately quantify the activity of ALP in real serum samples (recovery >93%, and relative error is less than 6.8% compared with the results of fluorescence spectrometer-based method) and consumes only 25 μL of serum. In addition, a logical decoder based on the "dual-key unlocking strategy" is designed, providing a feasible solution for the development of intelligent ALP activity detection equipment. As far as we know, this is the first report of a theoretical calculation-guided versatile design strategy for dual-emission Ln-MOFs and a portable enzyme activity assay kit for visual detection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have