Abstract
AbstractBiohybrid systems can combine inorganic light‐harvesting materials and whole‐cell biocatalysts to utilize solar energy for the production of chemicals and fuels. Whole‐cell biocatalysts have an intrinsic self‐repair ability and are able to produce a wide variety of multicarbon chemicals in a sustainable way with metabolic engineering. Current whole‐cell biohybrid systems have a yet undefined electron transfer pathway between the light‐absorber and metabolic enzymes, limiting rational design. To enable engineering of efficient electron transfer pathways, covalent biohybrids consisting of graphitic nitrogen doped carbon dots (g‐N‐CDs) and the outer‐membrane decaheme protein, MtrC from Shewanella oneidensis MR‐1 are developed. MtrC is a subunit of the MtrCAB protein complex, which provides a direct conduit for bidirectional electron exchange across the bacterial outer membrane. The g‐N‐CDs are functionalized with a maleimide moiety by either carbodiimide chemistry or acyl chloride activation and coupled to a surface‐exposed cysteine of a Y657C MtrC mutant. MtrC∼g‐N‐CD biohybrids are characterized by native and denaturing gel electrophoresis, chromatography, microscopy, and fluorescence lifetime spectroscopy. In the presence of a sacrificial electron donor, visible light irradiation of the MtrC∼g‐N‐CD biohybrids results in reduced MtrC. The biohybrids may find application in photoinduced transmembrane electron transfer in S. oneidensis MR‐1 for chemical synthesis in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.