Abstract
Optomagnetic multifunctional composite based on upconversion luminescence nanomaterial is regarded as a promising strategy for bioimaging, disease diagnosis and targeted delivery of drugs. To explore a mesoporous nanostructure with excellent water dispersibility and high drug-loading capacity, a novel nanorattle-structured Fe3O4@SiO2@NaYF4:Yb,Er magnetic upconversion nanorattle (MUCNR) was successfully designed by using Fe3O4 as core and NaYF4:Yb,Er nanocrystals as shell. The microstructures and crystal phase of the as-prepared MUCNRs were evaluated by transmission electron microscopy, X-ray powder diffraction and N2 adsorption/desorption isotherms. The Kirkendall effect was adapted to explain the formation mechanism of the MUCNRs. The loading content and encapsulation efficiency of doxorubicin hydrochloride (DOX) could reach as high as 18.2% and 60.7%, respectively. Moreover, the DOX loading MUCNR (DOX-MUCNR) system showed excellent sustained drug release and strong pH-dependent performance, which was conducive to drug release at the slightly acidic microenvironment of tumor. Microcalorimetry was used to quantify the interactions between the carrier structure and drug release rate directly. The heat release rates in the heat-flow diagrams are basically consistent with the DOX release rate, thereby showing that microcalorimetry assay not only provides a unique thermodynamic explanation for the structure–activity relationship of Fe3O4@SiO2@NaYF4:Yb,Er MUCNRs but also provides powerful guidance to avoid the blind selection or design of drug carriers. Therefore, our work firmly provided a comprehensive perspective for using Fe3O4@SiO2@NaYF4:Yb,Er MUCNRs as a remarkable magnetic targeted drug carrier.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have