Abstract
Organic donor-acceptor systems have attracted much attention due to their various potential applications. However, the rational construction and modulation of highly ordered donor-acceptor systems could be a challenge due to the complicated self-assembly process of donor and acceptor species. Considering the well-defined arrangement of species at the molecule level, a crystalline host-guest system could be an ideal platform for the rational construction of donor-acceptor systems. Herein, it is shown how the rational construction of highly tunable donor-acceptor materials can be achieved based on a crystalline host-guest platform. Within the well-established metal-organic framework NKU-111 as the crystalline host enabled by the relatively stable coordination-directed assembly, the introduction and arrangement of guest molecules in the crystals allow the rational construction of the NKU-111⊃guest donor-acceptor system. The donor-acceptor interaction in the systems can be readily modulated with different guest molecules, which can be justified by the well-demonstrated guest-dependent characteristics. Accordingly, the NKU-111⊃guest reveals highly tunable donor-acceptor properties such as charge-transfer-based emissions and electrical conductivity. This work indicates the potential of crystalline host-guest systems as an ideal platform for systematic investigations of donor-acceptor materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have