Abstract

The absorption behavior between plasmonic nanostructures and a target molecule plays key roles in effective surface-enhanced Raman scattering (SERS) detection. However, for analytes with low surface affinity to the metallic surface, e.g., polycyclic aromatic hydrocarbons (PAHs), it remains challenging to observe the enhanced Raman signal. In this work, we reported a ratiometric SERS strategy for sensitive PAH detection through the surface functionalization of 3D ordered mesoporous Au nanoparticles (meso-Au NPs). By employing mono-6-thio-β-cyclodextrin (HS-β-CD) as capture ligands, the hydrophobic molecules, e.g., anthracene, could be effectively absorbed on the meso-Au NP surface via a host-guest interaction. Besides, a hydrophobic slippery surface is used as a concentrator to deliver and enrich the Au/analyte droplets into a small area. Consequently, the detection limits of anthracene and naphthalene are down to 1 and 10 ppb. The improved SERS enhancement is mainly ascribed to the host-guest effect of HS-β-CD ligands, large surface area and high-density of sub-10 nm mesopores of Au networks, as well as the enrichment effect of hydrophobic slippery surface. Moreover, the HS-β-CD (480 cm-1 band) could serve as an internal standard, leading to the ratiometric determination of anthracene ranging from 1 ppm to 1 ppb. The proposed surface modification strategy in combination with the hydrophobic slippery surface shows great potential for active capture and trace detection of persistent organic pollutants in real-world SERS applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.