Abstract
Fluorescent ligands that selectively bind to a specific G-quadruplex (GQ) topology (antiparallel, hybrid or parallel) are highly sought after for aptasensor development and nanodevice construction. The coumarin-benzothiazole hybrid (BnBtC) is an internal charge transfer (ICT) ratiometric fluorescent probe, which displays two well-resolved emission bands at ∼450 nm for the coumarin component and ∼650 nm for the ICT band. The red ICT emission of BnBtC displays turn-on responses to protic solvent polarity and upon binding GQ structures, especially those produced by the hemin binding aptamer (PS2.M). In the present work, BnBtC was found to exhibit enhanced ICT emission upon binding the parallel GQ topology of PS2.M that is selectively produced in the presence of K+. This ability to discriminate K+ from other cationic metal ions through a turn-on ratiometric fluorescent response demonstrates the potential utility of the BnBtC probe for biosensor applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.