Abstract

Ratio-dependent predator-prey models are increasingly favored by both the theoretical and experimental ecologists as a more suitable alternative to describe predator-prey interactions when the predators hunt seriously. In this article, the classical Bazykin's model is modified with ratio-dependent functional response. Stability and bifurcation situations of the system are observed. Since the ratio-dependent model always has difficult dynamics in the vicinity of the origin, the analytical behavior of the system near origin is studied completely. It is found that paradox of enrichment can happen to this system under certain parameter values, although the functional response is ratio-dependent. The parametric space for Turing spatial structure is determined. We also conclude that competition among the predator population might be beneficial for predator species under certain circumstances. Finally, ecological interpretations of our results are presented in the discussion section.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.