Abstract

The experimentally observed growth of the plasma density in a high-current high-voltage pulsed discharge in a liquid medium is compared with the results of calculations based on the effective cross sections for electron-impact ionization and other elementary processes. It is found that, in the initial stage of the discharge, the plasma density grows linearly with time, whereas at densities above 3 × 1010 cm−3, the growth becomes exponential due to the collective acceleration of plasma electrons. The gas-vapor fraction of the water medium is ionized by two groups of electrons: low-energy electrons, with energies about several tens of electronvolts, and high-energy ones, with energies in the kiloelectronvolt range. The energy spent on water ionization is estimated and is found to be several times higher than the energy required to ionize a rarefied gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.