Abstract

Solders serve as electrical and mechanical interconnects in electronic packaging. The mechanical shock behavior of a Pb-free solder joint is quite complex, since the influences of solder microstructure, intermetallic compound (IMC) layer thickness, and strain rate on the overall dynamic solder joint strength need to be quantified. Dynamic solder joint strength is hypothesized to be controlled by two factors. At low strain rates it should be controlled by the bulk solder, whereas at high strain rates it may be controlled by the brittle intermetallic compound layer. In this paper, the dynamic solder joint strength of Sn–3.9 Ag–0.7 Cu solder joints was experimentally measured over the strain rate range 10−3–12s−1. The influences of changes in solder microstructure and IMC layer on dynamic solder joint strength were quantified, and visualized in three dimensions. Fracture mechanisms operating in the solder-controlled and IMC layer-controlled dynamic strength regimes are discussed. Finally, qualitative numerical simulations were conducted, which accurately depict the experimentally observed fracture behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.