Abstract

The rates of intracellular DNA synthesis at various temperatures between 39 ° and 31 °C were determined in hamster fibroblasts and HeLa cells by measuring average amounts of 3H-thymidine incorporated per cell in S phase per unit of time. The energy of activation and Q 10 for intracellular DNA synthesis were calculated from the slopes of the relative rates of DNA synthesis in HeLa cells and hamster fibroblasts vs. time, plotted on Arrhenius coordinates. In both cell types the incorporation of thymidine into DNA is characterized by an energy of activation of 21 000 calories/mole and a Q 10 of 2.94. The absolute rates of DNA synthesis were determined in hamster cells at various temperatures, with values ranging from 1.44 to 0.60 × 10 −14 g DNA/ min/cell at 39 ° to 31 °C, respectively. The length of the S phase of the hamster cell was calculated over a 39 ° to 31 °C range, and found to be 5.0 to 11.9 h, respectively. It is concluded that the S phase length is partly determined by the rate of temperature-dependent DNA synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call