Abstract
We study the rate of convergence of the empirical spectral distribution of products of independent non-Hermitian random matrices to the power of the Circular Law. The distance to the deterministic limit distribution will be measured in terms of a uniform Kolmogorov-like distance. First, we prove that for products of Ginibre matrices, the optimal rate is given by O(1∕n), which is attained with overwhelming probability up to a logarithmic correction. Avoiding the edge, the rate of convergence of the mean empirical spectral distribution is even faster. Second, we show that also products of matrices with independent entries attain this optimal rate in the bulk up to a logarithmic factor. In the case of Ginibre matrices, we apply a saddlepoint approximation to a double contour integral representation of the density and in the case of matrices with independent entries we make use of techniques from local laws.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have