Abstract
A quasistatic evolution problem for a phase transition model with nonconvex energy density is considered in terms of Young measures. We focus on the particular case of a finite number of phases. The new feature consists in the usage of suitable regularity arguments in order to prove an existence result for a notion of evolution presenting some improvements with respect to the one defined in [13], for infinitely many phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.