Abstract

Abstract Here we present the calculations of incoherent current flowing through the two-site molecular device as well as the DNA-based junction within the rate-equation approach. Selected phenomena of interest are discussed in detail. The structural asymmetry of a two-site molecule results in a rectification effect, which can be neutralized by an asymmetric voltage drop at the molecule-metal contacts due to coupling asymmetry. The results received for the poly(dG)-poly(dC) DNA molecule reveal the coupling-and temperature-independent saturation effect of the current at high voltages, establishing for short chains the inverse square distance dependence. Additionally we document the conductance peak shifting in the direction of higher voltages due to a temperature decrease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.