Abstract
Conventional video compression relies on interframe prediction (motion estimation), intra frame prediction and variable-length entropy encoding to achieve high compression ratios but, as a consequence, produces an encoded bitstream that is inherently sensitive to channel errors. In order to ensure reliable delivery over lossy channels, it is necessary to invoke various additional error detection and correction methods. In contrast, techniques such as Pyramid Vector Quantisation have the ability to prevent error propagation through the use of fixed length codewords. This paper introduces an efficient rate distortion optimisation algorithm for intra-mode PVQ which offers similar compression performance to intra H.264/AVC and Motion JPEG 2000 while offering inherent error resilience. The performance of our enhanced codec is evaluated for HD content in the context of a realistic (IEEE 802.11n) wireless environment. We show that PVQ provides high tolerance to corrupted data compared to the state of the art while obviating the need for complex encoding tools.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have