Abstract

The mechanical performance of the fiber tow composite is crucial for textile composites. To characterize the tensile properties of the carbon fiber tow composite, a tensile test methodology for high strain rate loading was developed based on the Split Hopkinson tensile bar equipped with an ultra-high-speed camera. The tensile performance of the tow composites is measured under quasi-static and dynamic loading rates, respectively. Furthermore, the effects of gauge length, fiber counts of specimens and the strain rate sensitivity are investigated. The results indicate that the tensile strength of carbon fiber tow composite is related to the length and fiber counts of the tow specimen and affected by the loading rates. In addition, a modified Weibull model was proposed to evaluate the effects of gauge length and strain rate on the tensile strength of the carbon fiber tow composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call