Abstract

Chemically activated CF(3)CFClCH(3), CF(3)CFClCD(3), CF(3)CFClCH(2)D, and CF(3)CFClCHD(2) molecules with 94 kcal mol(-1) of internal energy were formed by the combination of CF(3)CFCl radicals with CH(3), CD(3), CH(2)D, and CHD(2) radicals, which were generated from UV photolysis of CF(3)CFClI and CH(3)I, CD(3)I, CH(2)DI, or CHD(2)I. The total (HF + HCl) elimination rate constants for CF(3)CFClCH(3) and CF(3)CFClCD(3) were 5.3 x 10(6) and 1.7 x 10(6) s(-1) with product branching ratios of 8.7 +/- 0.6 in favor of HCl (or DCl). The intermolecular kinetic isotope effects were 3.22 and 3.18 for the HCl and HF channels, respectively. The product branching ratios were 10.3 +/- 1.9 and 11.8 +/- 1.8 (10.8 +/- 3.8 and 11.6 +/- 1.7) for HCl/HF and DCl/DF, respectively, from CF(3)CFClCH(2)D (CF(3)CFClCHD(2)). The intramolecular kinetic-isotope effects (without correction for reaction path degeneracy) for HCl/DCl and HF/DF elimination from CF(3)CFClCH(2)D (CF(3)CFClCHD(2)) were 2.78 +/- 0.16 and 2.98 +/- 0.12 (0.82 +/- 0.04 and 0.91 +/- 0.03), respectively. Density function theory at the B3PW91/6-311+G(2d,p) and B3PW91/6-31G(d',p') levels was investigated, and the latter was chosen to calculate frequencies and moments of inertia for the molecules and transition states. Rate constants, branching ratios and kinetic-isotope effects then were calculated using RRKM theory with torsional motions treated as hindered internal rotations. Threshold energies for HF and HCl elimination from CF(3)CFClCH(3) were assigned as 61.3 +/- 1.5 and 58.5 +/- 1.5 kcal mol(-1), respectively. The threshold energy for Cl-F interchange was estimated as 67 kcal mol(-1). The difference between the transition states for HCl and HF elimination is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call