Abstract

The termolecular, association reaction between OH and NO is a source of nitrous acid (HONO), an important atmospheric trace gas. Rate coefficients for the title reaction as recommended by evaluation panels differ substantially at the temperatures and pressures that prevail in the Earth’s boundary layer where the reaction is in the fall-off regime between low- and high-pressure limiting rate coefficients. Using pulsed laser methods for generation and detection of OH, we have reinvestigated the kinetics of the title reaction at pressures of 22–743 Torr (1 Torr = 1.333 hPa) and temperatures (273, 298, and 333 K) in pure N2 and in N2–H2O bath gases. In situ optical absorption measurements were used to rule out any bias due to NO2 or HONO impurities. Our rate coefficients (k1) in N2 bath gas are parametrized in terms of low-pressure (k0) and high-pressure (k∞) rate coefficients and a fall-off parameter (FC) with k1,0N2 = 7.24 × 10–31 (T/300 K)−2.17 cm6 molecule–2 s–1, k1,∞ = 3.3 × 10–12 (T/300 K)−0.3 cm3 molecule–1 s–1, and FC = 0.53. Used with the “Troe” expression for termolecular reactions, these parameters accurately reproduce the current data in the fall-off regime and also capture literature rate coefficients at extrapolated temperatures. The presence of water vapor was found to enhance the rate coefficients of the title reaction significantly. The low-pressure limiting rate coefficient in H2O bath gas is a factor 5–6 larger than in N2, at room temperature (k1,0H2O = 4.55 × 10–30 (T/300 K)−4.85 cm6 molecule–2 s–1) indicating that H2O is much more efficient in quenching the association complex HONO* through collisional energy transfer. Based on measurements in N2–H2O mixtures, a parametrization of k1 including both N2 and H2O as third-body quenchers was derived. Neglecting the effect of H2O results, e.g., in an underestimation of k1 by >10% in the tropical boundary layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.