Abstract

The reaction paths for the formation of Si3O3 molecules have been investigated at high level ab initio quantum chemical calculations by using the QCISD method with the 6-311++G(d,p) basis set. The cis-Si2O2 isomer does not participate in the chemical mechanism for the formation of Si3O3 molecules. Although the SiO + cis-Si2O2 reaction is exothermic and spontaneous, it is not expected to explain the growth mechanism of Si3O3 in the interstellar silicate grains of circumstellar envelopes surrounding M-type giants. The reaction of SiO with cyclic Si2O2 molecules is exothermic, is spontaneous, and has a nonplanar transition state. The Gibbs free energy for the transition state formation, (DeltaG0#), is around 5.5 kcal mol-1 at 298 K. The bimolecular rate coefficient for this reaction, kT, is about 1 x 10-12 cm3 molecule-1 s-1 at 298 K and in the collision limit, 1.5 x 10-10 cm3 molecule-1 s-1, at 500 K. The activation energy, Ea, is about 8 kcal mol-1. The enthalpy of Si3O3 fragmentation is 53.9 kcal mol-1 at 298 K. The SiO + cyclic Si2O2 reaction is expected to be the most prominent reaction path for the Si3O3 formation in interstellar environment and fabrication of silicon nanowires.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.