Abstract
Vascular endothelial growth factor (VEGF) is a potent inflammation, vascular permeability, and angiogenic factor. Variations of the VEGF gene are implicated in the pathogenesis of diabetic retinopathy. Previous studies have shown that Brown Norway (BN) rats have higher retinal VEGF levels and more severe retinal vascular leakage than Sprague-Dawley (SD) rats in response to ischemia and diabetes. To investigate the molecular mechanism of vascular leakage in this animal model, F2 progeny were generated by crossbreeding BN and SD rats. Neonatal rats were exposed to hyperoxia to induce oxygen-induced retinopathy (OIR) models. The F2 rats in response to ischemia have shown a linear distribution of retinal VEGF levels, which is significantly and positively correlated to retinal vascular leakage. We identified a single nucleotide polymorphism (SNP) at upstream stimulating factor-binding site in the VEGF promoter region between BN and SD rats. No differences were found in retinal vascular permeability or VEGF levels between F2 rats with BN, SD, and BN/SD alleles of VEGF SNP. The increased retinal VEGF levels are correlated to ischemia-induced retinal vascular leakage in the OIR rat model. The VEGF mRNA and promoter are not responsible for increased retinal VEGF level and vascular permeability. The up-regulation of VEGF expression activated by a yet to be identified upstream factor or mediator affecting VEGF stability may be associated with a high susceptibility to retinal vascular leakage in BN rats.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have