Abstract
We studied the effects of energy restriction on serum osteocalcin concentration and bone formation rate in rats. The experiment was designed to achieve energy restriction by reducing the carbohydrate intake while providing identical quantities of protein, fat, vitamins and minerals. Energy intakes of three groups of post-weaning male rats were restricted by 20, 40 and 60% for 4 wk. Serum calclum, phosphorus, transthyretin, triiodothyronine (T3), thyroxine (T4), 1,25-dihydroxycholecalciferol, 25-hydroxycholecalciferol and immunoreactive parathyroid hormone (iPTH) concentrations were determined. Energy restriction (20, 40 and 60%) produced a significant and gradual drop of serum osteocalcin concentrations, although the serum concentrations of its key regulators, i.e., 1,25-dihydroxycholecalciferol and iPTH, were not significantly affected. On the contrary, serum concentrations of calcium, phosphorus, transthyretin, T3 and T4 were significantly lower in the energy-restricted groups. However, our results do not support their implication in the regulation of serum osteocalcin synthesis by energy intake. Serum osteocalcin concentration was positively correlated with bone mineral apposition (r = 0.50, P < 0.05) and bone mineralization (r = 0.50, P < 0.05) rates suggesting that its decrease resulted from a reduction of bone formation, and not from abnormal mineralization, because osteoid seam thickness was not modified. Energy intake seems to be an important determinant of serum osteocalcin concentration and bone formation; however, the exact mechanism underlying this regulation remains to be determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.