Abstract
Electron optics exploits the analogies between rays in geometrical optics and electron trajectories, leading to interesting insights and potential applications. Graphene, with its two-dimensionality and photon-like behavior of its charge carriers, is the perfect candidate for the exploitation of electron optics. We show that a circular gate-controlled region in the presence of Rashba spin-orbit interaction in graphene may indeed behave as a Veselago electronic lens but with two different indices of refraction. We demonstrate that this birefringence results in complex caustics patterns for a circular gate, selective focusing of different spins, and the possible direct measurement of the Rashba coupling strength in scanning probe experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.