Abstract

Tuning the electronic properties of low-dimensional materials is helpful in building nano electronic devices. Here, we investigate the structural and electronic structures of one-dimensional helical Se atomic chain by using first-principles calculations. Our results show that this structure has a much lower energy than the one with a straight-line structure. Our phonon calculations and <i>ab initio</i> molecular dynamics simulations suggest that this structure is both dynamically and thermally stable. The band structure shows that it is a semiconductor with a gap of about 2.0 eV and Rashba-type splitting near the <i>X</i> point. The helical structure is good for tuning the electronic properties by using strains. As a result, a 5% strain leads to a 20% change in the band gap while the Rashba energy offset is doubled. Moreover, we find that the valence band is a flat band, over which hole doping can induce ferromagnetism and the system becomes half-metallic. Further increasing the doping level can transform the system into a ferromagnetic metal. Such a strategy is then applied to one-dimensional helical Te atomic chain and similar results are obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.