7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1002/jnr.24609
Copy DOIJournal: Journal of neuroscience research | Publication Date: Mar 3, 2020 |
Citations: 10 |
Individuals diagnosed with major depressive disorder not responding to at least two adequate treatments are defined as treatment-refractory major depressive disorder (TR-MDD). Some TR-MDD patients have altered metabolic phenotypes that may be pharmacologically reversed. The characterization of these phenotypes and their underlying etiologies is paramount, particularly their genetic components. In this study, TR-MDD patients (n=124) were recruited and metabolites were quantified in their cerebrospinal fluid (CSF) and peripheral blood. Three sub-categories of deficiencies were examined, namely 5-methyltetrahydrofolte (in CSF; n=13), tetrahydrobiopterin (in CSF; n=11), and abnormal acylcarnitine profiles (in peripheral blood; n=8). Whole exome sequencing was performed on genomic DNA from the entire TR-MDD cohort and exonic variant allele frequencies for cases were compared to a control cohort (1:5 matching on ancestry). Low frequency, damaging alleles were identified and used for in silico pathway analyses. Three association signals for TR-MDD approached genome-wide significance on chromosomes 22, 7, and 3. Three risk-associated variants from a prior depression study were replicated. Relevant biological pathways were identified that contained an enrichment of rare, damaging variants in central nervous system (CNS)-specific pathways, including neurotransmitter receptors, potassium channels, and synapse transmission. Some TR-MDD patients had rare variants in genes that were previously associated with other psychiatric disorders, psychiatric endophenotypes, CNS structural defects, and CNS-related cellular and molecular functions. Exome analysis of metabolically phenotyped TR-MDD patients has identified potentially functional gene pathways and low frequency, deleterious gene variants for further investigation. Further studies in larger cohorts of biochemically phenotyped TR-MDD patients are desirable to extend and confirm these findings.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.