Abstract
In this work we compare the CO2 gas sensing properties of two new materials synthesized from rare earth hydroxide (La(OH)3,Pr(OH)3) precursors, with the already reported ones for neodymium oxycarbonate, which was synthesized from the corresponding Nd(OH)3 precursor. In-situ XRD measurements show that by following similar thermal treatment, praseodymium hydroxide is transforming to the metal oxide while lanthanum hydroxide forms an oxycarbonate, like in the case of neodymium. The chemoresistive effects we found for the lanthanum oxycarbonate were even higher than the ones recorded for the neodymium oxycarbonate; for the praseodymium metal oxide we could not find any CO2 sensitivity. Accordingly, we think that the condition for CO2 sensing is the formation of the rare earth oxycarbonate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.