Abstract
The development of Pd-based materials with high activity and long-term stability is crucial for their practical applications as an anode catalyst in direct formic acid fuel cells. Herein, we reveal that the catalytic activity of Pd towards formic acid oxidation can be enhanced by incorporation of a series of rare-earth oxides, including Sc2O3, CeO2, La2O3, and Pr2O3. For example, Pd nanoparticles incorporated with Sc2O3 supported on nitrogen-doped reduced graphene oxide (Pd-Sc2O3/N-rGO-x, x = 1/3, 1/2, 2/3, 1, and 3/2; "x" denotes the molar ratio of Pd : Sc) can be obtained using a sodium borohydride reduction method. When directly used as an electrocatalyst towards formic acid oxidation (FAO), Pd-Sc2O3/N-rGO-2/3 exhibits the highest mass current density of 972.9 mA mgPd-1, surpassing that of the reference catalysts Pd/C (262.6 mA mgPd-1) and Pd/N-rGO (304.9 mA mgPd-1). More importantly, the Pd-Sc2O3/N-rGO-2/3 catalyst demonstrates high CO tolerance and long-term stability in the FAO reaction. The improved electrooxidation activity and stability could be attributed to the synergistic effect between Sc2O3 and Pd nanoparticles. Therefore, this study presents a crucial contribution to the advancement of various rare-earth oxides in enhancing Pd activity towards FAO and beyond.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have