Abstract

In the past 30 years, metal-organic frameworks (MOFs) have garnered widespread attention owing to their diverse chemical structures, and tunable properties. As a result, MOFs are of interest for a wide variety of potential applications spanning multiple scientific and engineering disciplines. MOFs have been synthesized using several elements from the periodic table, including those with metal nodes containing s-, p-, d-, and f-block elements. MOFs synthesized with rare-earth (RE) elements, which include scandium, yttrium and the series of fifteen lanthanides are an intriguing family of MOFs from the standpoint of both structure and function. While RE-MOFs can possess many of the same properties common to all MOF families (i.e., permanent porosity, tunable pore size/shape, accessible Lewis acidic sites), they can also display unique structures and properties owing to the high coordination numbers and distinct optical properties of RE-elements. In this review, we present the progress, and highlight several discoveries from research conducted on the topic of RE-MOFs. First, diverse structures of RE-MOFs are presented, divided into classes based on the composition of the RE-metal node being RE(iii)-ions, RE(iii)-chains, or RE(iii)-clusters. Then, several potential applications of RE-MOFs are presented, highlighting examples in the areas of chemical sensing, white light emission, biological imaging, drug delivery, near infrared emission, catalysis, gas adsorption, and chemical separations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.