Abstract

The Kentucky State University heating plant stoker ash, with over 1000 μg/g Rare earth elements + yttrium (REY), was previously shown to be more resistant to acid-extraction than pulverized-coal fly ashes of similar bulk composition. In this study, the petrology and mineralogy of this stoker ash was examined in greater detail as a means to better understand why the REY were relatively inert towards acid extraction. The results showed that this stoker ash is dominated by mullite and quartz/cristobalite with lesser amounts of hematite and magnetite compared to the glass-dominated assemblages of pulverized-coal-combustion fly ashes with similar chemical compositions. On the nanometer to micron scale, La-Ce-Nd-bearing monazite and Ce phosphates (monazite – CePO4 and CeP3O9) are seen to be part of the mineral assemblage. Overall, the results demonstrate that despite the presence of discrete REY-bearing minerals in the sample, their encapsulation within other phases may explain their low extractability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.