Abstract

Rare-earth ion doped oxyfluoride glass with a composition of 25SiO2 x 5GeO2 x 15AIO1.5 x 40PbF2 x 10PbO x (4.9 - x)GdF3 x 0.1HoF3 x xYbF3 (x = 0, 0.1,0.2, 0.5,1,2, 3, and 4) in molar ratio was developed. When the oxyfluoride glasses are heat-treated at the first crystallization temperature, the glasses give transparent glass-ceramics in which rare-earth-containing fluorite-type nanocrystals of about 17.2 nm in diameter uniformly precipitated in the glass matrix. Comparing with the glasses before heat treatment, the glass ceramics exhibit very strong up-conversion luminescence under 980-nm light excitation. Rare-earth-containing nanocrystals were also space selectively precipitated upon laser irradiation in an oxyfluoride glass; the size of precipitated nanocrystals can be controlled by laser power and scan speed. The intensity of the green up-conversion luminescence is strongly dependent on the precipitation of beta-PbF2 nanocrystals and the YbF3 concentration. The reasons for the highly efficient Ho3+ up-conversion luminescence are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call