Abstract
Oxyfluoride glasses were developed with composition 30SiO2·15AlO1.5·28PbF2·22CdF2·(4.9 – x)GdF3·0.1HoF3·x YbF3 (x ¼ 0; 0.1, 0.2, 0.5, 1, 2, 3, and 4) in mol%. Powder X-ray diffraction analysis revealed that the heat-treatments of the oxyfluoride glasses at the first crystallization temperature cause the precipitation of Yb3+–Ho3+ co-doped fluorite-type nano-crystals of about 17.8 nm in diameter in the glass matrix. These transparent glass-ceramics exhibited very strong green up-conversion luminescence due to the Ho3+: (5F4, 5S2) → 5I8 transition under 980 nm excitation. The intensity of the green up-conversion luminescence in the glass-ceramics was much stronger than that in the precursor oxyfluoride glass. The reasons for the highly efficient Ho3+ up-conversion luminescence in the oxyfluoride glass-ceramics are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.