Abstract

ABSTRACT Very metal-poor stars that have [Fe/H] < −2 and that are enhanced in C relative to Fe ([C/Fe] > +0.7) but have no enhancement of heavy elements ([Ba/Fe] < 0) are known as carbon-enhanced metal-poor (CEMP-no) stars. These stars are thought to be produced from a gas that was polluted by the supernova (SN) ejecta of the very first generation (Population III) massive stars. The very high enrichment of C (A(C) ≳ 6) observed in many of the CEMP-no stars is difficult to explain by current models of SN explosions from massive Population III stars when a reasonable dilution of the SN ejecta, which is consistent with detailed simulation of metal mixing in minihaloes, is adopted. We explore rapidly rotating Population III stars that undergo efficient mixing and reach a quasi-chemically homogeneous (QCH) state. We find that QCH stars can eject large amounts of C in the wind and that the resulting dilution of the wind ejecta in the interstellar medium can lead to a C enrichment of A(C) ≲ 7.75. The core of QCH stars can produce up to an order of magnitude of more C than non-rotating progenitors of similar mass and the resulting SN can lead to a C enrichment of A(C) ≲ 7. Our rapidly rotating massive Population III stars cover almost the entire range of A(C) observed in CEMP-no stars and are a promising site for explaining the high C enhancement in the early Galaxy. Our work indicates that a substantial fraction of Population III stars were likely rapid rotators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call