Abstract

The centrality dependence of rapidity distributions of pions in Pb+Pb reactions can be understood by imposing local energy-momentum conservation in the longitudinal "fire-streaks" of excited matter. With no tuning nor adjustment to the experimental data, the rapidity distribution of pions produced by the fire-streak which we obtained from Pb+Pb collisions reproduces the shape of the experimental pion rapidity distribution in p+p interactions, measured by the NA49 Collaboration at the same energy. The observed difference in the absolute normalization of this distribution can be explained by the difference in the overall energy balance, induced by baryon stopping and strangeness enhancement phenomena occurring in heavy ion collisions. We estimate the latter effects using a collection of SPS experimental data on $\pi^\pm$, $K^\pm$, net $p$, and $n$ production in p+p and Pb+Pb reactions. Implications of the above findings are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.