Abstract

Abstract As semiconductor technology advances from one node to the next, fabrication also becomes increasingly challenging to ramp up production with the most desirable yield and reliable product in a timely manner. At an advanced technology node such as 65nm, the interaction between product design, process margin, and process equipment continues to limit the product yield and reliability performance. Traditional methods, which usually rely on sequential feedback of each experimental lot, require too many learning cycles to achieve target performance, yield, and reliability levels. This paper describes a methodology that potentially accelerates the progression of identifying process and product-design interactions and marginalities during the development stage. It demonstrates the successful application of a failure mode effect analysis design design-of-experiments reticle for extracting process-design interaction information. This approach provides insights to early learning cycles in achieving accelerated critical learning for yield and reliability improvements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.