Abstract

Rapid transition to turbulence in a pipe flow, initially at rest, was achieved by temporally accelerating the flow and then sharply decelerating it to its final Reynolds number. The acceleration phase was characterized by the growth of a laminar boundary layer close to the wall. The subsequent rapid deceleration resulted in inflectional velocity profiles near the wall, followed immediately by transition to turbulence. The time taken to transition was significantly less than the time to transition in a pipe flow monotonically accelerated to the same Reynolds number. Transition is intrinsically different to that observed in oscillatory pipe flows, but is qualitatively similar to pipe flows decelerated to rest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.