Abstract

Statistical measures of turbulence intensities in turbulent pipe and channel flows at a friction Reynolds number of Reτ ≈ 930 were explored by a population of large-scale motions (LSMs) and very-large-scale motions (VLSMs). Although the statistical measures characterizing these internal turbulent flows were similar in the near-wall region, the extents of the mean streamwise velocities and cross-stream components of the turbulence intensities differed in the core region. The population density of VLSMs/LSMs decreased/increased significantly in the core region of the pipe flow. The survival time of VLSMs of the pipe flow was shorter than that of the channel flow. The area fractions of the VLSMs displayed similar trends to the population density. The wall-normal and spanwise turbulence intensities in the pipe flow increased in the core regions due to the high-speed large-scale structures and associated motions above the structures. The large-scale structures increased the streamwise intensity and the Reynolds shear stress in the pipe and channel flows, whereas the effective streamwise intensities and the Reynolds shear stress were equivalent in both flows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call