Abstract
In this paper we report on the design, fabrication and modeling of 49 cm2, 200-mum thick, 1-5 Omega-cm, n- and p-type lang111rang and lang100rang screen-printed silicon solar cells. A simple process involving RTP front surface phosphorus diffusion, low frequency PECVD silicon nitride deposition, screen-printing of Al metal and Ag front grid followed by co-firing of front and back contacts produced cell efficiencies of 15.4% on n-type lang111rang Si, 15.1% on n-type lang100rang Si, 15.8% on p-type lang111rang Si and 16.1% on p-type lang100rang Si. Open circuit voltage was comparable for n and p type cells and was also independent of wafer orientation. High fill factor values (0.771-0.783) for all the devices ruled out appreciable shunting which has been a problem for the development of co-fired n-type lang100rang silicon solar cells with Al back junction. Model calculations were performed using PC1D to support the experimental results and provide guidelines for achieving >17% n-type silicon solar cells by rapid firing of Al back junction
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.