Abstract
AbstractRapid Thermal Chemical Vapor Deposition (RTCVD) of undoped and insitu doped polycrystalline silicon films has been accomplished in a cold-wall reactor. Dichlorosilane was used for the silicon source and AsH3 gas was used as the dopant source. Thedeposition kinetics of poly-silicon films on silicon dioxide over a range of deposition temperatures, pressures and carrier gas chemistries was studied. Both blanket and selective deposition modes were examined. The poly-silicon films were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for morphology and grain size analysis. Using X-ray diffraction technique, preferred grain orientation dependency of poly-silicon films on growth conditions was investigated. Dopant incorporation, dopant activation and oxygen content of polysilicon films were measured by secondary ion mass spectrometry (SIMS), four point probe, and spreading resistance profiling (SRP) techniques.This paper is to report the results of material characterization of polysilicon films deposited by RTCVD, and to address the applications and advantages of ‘Integrated Processing’ technology involving deposition of polysilicon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.