Abstract

There is renewed interest in the development of Ge-based devices. Implantation and dopant activation are critical process steps for future Ge devices fabrication. Boron is a common p-type dopant, which remarkably is active immediately after implantation in Ge at low doses. This paper examines the effect of increasing dose (i.e., 5/spl times/10/sup 13/-5/spl times/10/sup 16/ cm/sup -2/) and subsequent annealing (400/spl deg/C-800/spl deg/C for 3 h in nitrogen) on activation and diffusion of boron in Ge. Secondary ion mass spectrometry (SIMS), spreading resistance profiling (SRP), high resolution X-ray diffraction (HRXRD), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA) are used to characterize the implants before and after annealing. It is found that very high fractions of the boron dose (/spl sim/5%-55%) can be incorporated substitutionally immediately after implantation leading to very high hole concentrations, /spl ges/2/spl times/10/sup 20/ cm/sup -3/, deduced from SRP. Small increases in activation after annealing are observed, however, 100% activation is not indicated by either SRP or NRA. Negligible diffusion after annealing at either 400/spl deg/C or 600/spl deg/C for 3 h was, furthermore, observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call