Abstract
Silver nanoparticles (AgNPs) were rapidly green synthesized using Clerodendrum splendens (C. splendens) leaf extract with an environment-friendly approach. The stability, morphology and grain size of the AgNPs were determined using Zeta potential analysis, Transmission electron microscopy (TEM) and X-ray diffraction spectra (XRD). The phytochemicals present in the C. splendens, which are responsible for the bioreduction of silver ions (Ag+ ions) and stabilization of AgNPs, were investigated using Fourier transform infrared spectroscopy (FTIR). The vital compositions in the AgNPs solution were analyzed by energy dispersive X-ray spectroscope (EDS). Using X-ray photoelectron spectroscope (XPS) measurement, the effect of C. splendens extract on the formation of AgNPs was investigated. The surface area of the AgNP was evaluated by using multiple point Brunauer-Emmett-Teller (BET) method. Results indicated that a low concentration of leaf extract is enough to enhance the rate of formation of AgNPs. C. splendens instantaneously reduced Ag+ to AgNPs to reach 98% yield within 15 min. The fabricated AgNPs are in the size range of ∼46 nm, well crystallized with face-centered cubic (fcc) symmetry. The AgNPs revealed a significant antimicrobial activity against airborne pathogens such as Pseudomonas aeruginosa (P. aeruginosa) and Bacillus subtilis (B. subtilis).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have