Abstract
We report the rapid, one-pot synthesis of functional polycarbonates derived from renewable alcohols (i.e., glucose tetraacetate, acetyl isosorbide, lauryl alcohol, and ethanol) and a cyclic carbonate bearing an imidazolecarboxylate. This tandem functionalization/ring-opening polymerization strategy can be performed on multigram scale and eliminates the need for rigorous purification and specialized equipment. A wide range of glass transition temperatures (Tg) was accessible from these renewable pendant groups (>75 °C Tg window). We also synthesized several statistical copolycarbonates to show the thermal properties can be tailored with this tandem method. Additionally, we demonstrate a circular polymer economy via chemical recycling to a cyclic carbonate precursor. This work may facilitate development of sustainable polycarbonates with tailored properties that work toward eliminating plastic waste streams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.