Abstract

At present, the detection of chlorothalonil is generally based on chromatography and immunoassay; both of which are time-consuming and costly. In this study, Surface-enhanced Raman Spectroscopy (SERS) has been successfully utilized in the detection of chlorothalonil coupled with photochemistry and meanwhile, gold nanoparticles were prepared to enhance the Raman signal. Two Raman peaks (2246cm- 1 and 2140cm- 1) of chlorothalonil were appeared after ultraviolet (UV) irradiation compared to the original solution. Chlorothalonil generated excited and weakened C≡N bonds in its structure by absorbing UV energy, thus leading to two kinds of corresponding peaks. These two kinds of peaks were both selected as analytical peaks in chlorothalonil detection. Different light sources and solvents were made different contributions to the final spectra. Chlorothalonil methanol solution under 302 nm wavelength irradiation was performed the best. The 2246cm- 1 sharp peak represented to the normal C≡N bond appeared at first, which overall trend was significantly increased followed by a gradual decrease. The 2140cm- 1 broad peak represented to the weakened C≡N bond appeared later, which overall trend was increased as the irradiation time passing by and then kept stable. Natural bond orbital (NBO) analysis indicates that the downshift of C≡N bond from 2246cm- 1 to 2140cm- 1 is due to the increase of electronic populations of π* orbital of C≡N bond transited from π orbital excited by UV irradiation. The positively charged C≡N bond had more chance to approach negatively charged gold nanoparticles. The detection limit of chlorothalonil was as low as 0.1 ppm in the standard solution. Orange peels spiked with chlorothalonil oil were also detected in this paper to confirm the practical operability of this method. The SERS method may be further developed as a rapid detection of pesticides that contains a triple bond by utilizing photochemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call