Abstract

Accurate detection of vitamins is critically important for clinical diagnosis, metabolomics and epidemiological studies. However, the amounts of different vitamins vary dramatically in human serum. It is a challenge to achieve simultaneous detection of multiple vitamins rapidly. Herein, we developed and validated a sensitive and specific method using ultra high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) for simultaneous quantification of 7 fat-soluble vitamins (FSVs) across their physiological concentrations in serum for the first time, which was subjected to protein precipitation, liquid-liquid extraction to an organic phase, evaporation to dryness and reconstitution with acetonitrile. In the present procedure, retinol (vitamin A), ergocalciferol (25-OH-D2), cholecalciferol (25-OH-D3), α-tocopherol (vitamin E), phylloquinone (vitamin K1), menatetrenone-4 (MK-4), and menaquinone-7 (MK-7) were detected in one analytical procedure for the first time within 5.0 min by triple quadrupole tandem mass spectrometry. The limit of quantification (LOQ) for vitamin A was 10.0 ng mL-1, LOQs for 25-OH-D2 and 25-OH-D3 were 1.0 ng mL-1, LOQ for vitamin E was 100.0 ng mL-1, and LOQs for vitamin K1, MK-4 and MK-7 were 0.10 ng mL-1, respectively, with a correlation (R2) of 0.995-0.999. Recoveries ranged from 80.5% to 118.5% and the intra-day and inter-day coefficients of variance (CVs) were 0.72-8.89% and 3.2-9.0% respectively. The method was validated according to the European Medicines Agency (EMA) and U.S. Food and Drug guidelines and C62-A on bioanalytical methods, and was used for clinical routine determination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call