Abstract
Efficient and stable perovskite solar cells rely on the use of Pb species potentially challenging the technologies’ commercialisation. In this study, the fate of Pb derived from two common perovskite precursors is compared to cationic lead in soil-water microcosm experiments under various biogeochemical conditions. The rapid and efficient removal of Pb from the aqueous phase is demonstrated by inductively coupled plasma mass spectrometry. Sequential soil extraction results reveal that a substantial amount of Pb is associated with immobile fractions, whereas a minor proportion of Pb may become available again in the long term, when oxygen is depleted (e.g. during water logging). X-ray absorption spectroscopy results reveal that the sorption of Pb on mineral phases represents the most likely sequestration mechanism. The obtained results suggest that the availability of leached Pb from perovskite solar cells is naturally limited in soils and that its adverse effects on soil biota are possibly negligible in oxic soils. All three Pb sources used behaved very similar in the experiments, wherefore we conclude that perovskite derived Pb will have a similar fate compared to cationic Pb, so that established risk assessment considerations for Pb remain legitimate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.