Abstract

Vibrio anguillarum is an important bacterial pathogen of aquatic organisms and a significant problem in aquatic farming. The rapid detection and identification of V. anguillarum, and other pathogens that infect marine organisms, is crucial to effective disease management. In this study, we developed a loop-mediated amplification (LAMP) assay to detect V. anguillarum in an hour in a single tube without the need for thermal cycling. Conserved regions of the metalloproteinase (empA) gene of V. anguillarum served as the targets for primer design. A fragment of the empA gene was amplified at 65°C in the presence of the primer mixture and Bst DNA polymerase. In the optimized LAMP assay, 6.7 pg of V. anguillarum DNA could be detected. Six strains of V. anguillarum and 17 strains of non-V. anguillarum bacteria were used in this study to evaluate the species specificity of the primers. The six V. anguillarum strains gave a positive result in the LAMP assay. This method was also validated in V. anguillarum-infected fish. This LAMP method is more sensitive than PCR in the detection of V. anguillarum and shows good species specificity. The LAMP assay is therefore an effective method for the quick detection of V. anguillarum both in the laboratory and in the field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.